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Dielectrophoretic manipulation of macromolecules: The electric field

D. S. Clague* and E. K. Wheeler†

Center for Microtechology/EETD, L-223, Lawrence Livermore National Laboratory, Livermore, California 94550
~Received 14 March 2001; published 18 July 2001!

The use of dielectrophoresis is fast becoming a proven technique for manipulating particles and macromo
ecules in microfluidic systems. Here an analytic solution for the gradient in the electric field strength,“•~E•E!,
produced by a two-dimensional array of parallel electodes is derived using the method of Green’s functions
The boundary condition for the potential between electrodes is estimated by using a linear approximation
While the Green’s function used here is somewhat different from Wanget al., J. Phys. D29, 1649~1996!, the
resulting analytic expression for the potential field is in exact agreement with their result. Selected results fo
equispaced electrodes with equal widths are compared with Wanget al., J. Phys. D29, 1649 ~1996!. The
analytic solution is employed to study the effects of electrode spacing and electrode width on the gradient i
electric field intensity. Results show that the magnitude in the gradient in the electric field intensity exhibited
the expected dependence on the applied voltage; however, the dependence on electrode width was found to
on the order of the electrode width squared. Results to explore the effects of electrode spacing show that as t
spacing is reduced below two electrode widths the magnitude of the gradient increases exponentially.

DOI: 10.1103/PhysRevE.64.026605 PACS number~s!: 41.20.2q, 46.25.Cc, 89.75.Da
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I. INTRODUCTION

Dielectrophorsis~DEP! is a phenomenon by which a non-
uniform electric field induces a net force on a polarizabl
particle ~or macromolecule!. As described by Pohl@1#, the
field can be produced by either a direct current~dc! or alter-
nating current~ac!. The only requirement is that the field be
nonuniform. This field nonuniformity causes an imbalance i
the Lorenz forces produced at the~natural or induced! par-
ticle poles so that the resultant net forces,F5E q, is nonzero
and causes particle motion. Depending on the relative diffe
ence between the complex dielectric properties of the su
pended particle and the suspending medium@2#, this net
force causes particles to be either attracted or respulsed fro
regions of high field intensity. The first order or dipole con
tribution to the dielectrophoretic force@1–5# is given by

FDEP52 p a3em* K~ep* ,em* !“~E•E!. ~1!

HereE is the electric field,a is the particle radius,K(ep* ,em* )
is the Clausius-Mossotti factor, andep* andem* are the com-
plex permittivities of the particle and the suspending me
dium, repectively. It should be noted here that Eq.~1! is the
time-averaged force@3#, and for the work presented in this
communication, we focus on standing wave dielectrophor
sis @5#.

The permittivity and conductivity of the target species an
suspending medium must be determined through experime
tal means, and in some cases, these data are available in
open literature@6,7#. Aside from experimental determination
of the complex permittivities, an analytic solution for the
electric field and the gradient in the electric field intensity
have been the most difficult unknown to obtain. Therefore
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we are interested in developing an analytic solution for th
electric field and the gradient in the electric field intensity
produced by a parallel array of electrodes. Past efforts
solve this problem include: the use of commercial finite ele
ment methods (MaxwellTM), the charge density method@4#,
Green’s theorem@5#, and the Green’s function for a line
source with conformal mapping@8#. Each of these ap-
proaches are briefly discussed below.

In the charge density method, each electrode is subdivide
into sufficiently small domains so that the surface charg
density in each subdomain can be considered constant@4#.
By using the fundamental relationship between the surfac
charge density to the potential@4#, one can determine the
field potential above the electrode array. From the resultin
potential, one can obtain all of the desired field quantities
that is,E and“(E•E), see Wanget al. @4# for details. The
only disadvantage to this approach is the necessity of solvin
many simultaneous equations, that is, each subdomain pro
lem, to construct the complete solution. This process can b
computationally expensive.

In the Green’s theorem approach of Wanget al. @5#, the
problem of interest is reciprocally related to a known, trac
table problem using Green’s theorem. By doing this the
construct a three-dimensional Green’s function~or propaga-
tor! that enables the prediction of the potential above th
electrode plane as a function of the surface potential@5#. The
only limitation of this approach is that the functionality of
the surface potential in the gaps between electrodes must
assumed. Wanget al. demonstrate their approach using a
two-dimensional array of parallel electrodes with a linea
approximation for the surface potential in the gaps betwee
electrodes. While this is clearly an approximation, they show
that at a height of 10mm above the electrode array for an
applied voltage of 1Vrms that their result only over-predicts
the potential predicted by the charge density method by a
proximately 5%. As stated by Wanget al. @5#, the primary
advantages of the Green’s theorem approach over other a
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proaches is that it is accurate and the analytic form yield
rapid results@5#. In later parts of their work, they introduce
and use higher order, nonlinear approximations for the su
face, gap potential.

The Green’s function approach of Garcia and Clague@8#
uses the Green’s function for a line source@9# to represent
each electrode. The Green’s function goes as22 ln(r), where
r is the radial position relative the source. In their analysis
the electrodes are defined as an array of strip electrodes. T
strip array is then mapped onto an array of cylinders whe
the potential and field are produced by summing the contr
bution from each line source representing the individual cy
inders. From this they construct a solution for the potentia
and the resultingE field, which they then map back to car-
tesian coordinates to obtain a solution for a parallel array o
strip electrodes. Like the charge density method, this a
proach requires no knowledge of the surface boundary co
dition in the gap between electrodes; however, because lnr)
dependence does change sign whenr transitions from less
than 1 to greater than 1,r must be normalized by a charac-
teristic length scale or combination of length scales descri
tive of the system, e.g., the location of the ground plane. Th
magnitude of the resulting solution to“(E•E) is influenced
by the choice of this length scale. Nonetheless, their a
proach is instructive and useful for further analysis of add
tional electrode configurations.

In this study, we use the half-plane Green’s function@9#,
and a linear approximation for the surface potential in th
gaps between electrodes@5#, to construct our solution. The
half plane Green’s function is two-dimensional and function
ally different from the Green’s function derived by Wang
et al. @5#; however, in principle, for an identical configura-
tion of electrodes under the same conditions, our solutio
should be in exact agreement with Wanget al. @5#. In addi-
tion, we do not take into account the variation in field prop
erties due the presence of multiple particles.

In Sec. II, we present the approach used to derive th
potential field, and the resulting analytic solutions for the
potential field, electric field and the gradient in the electri
field intensity. The components of the gradient of the electr
field intensity are presented as a function of the height abo
an electrode array in Sec. III. In addition, results for varia
tions in electrode width, spacing and the applied voltage a
also presented in Sec. III. Finally, in Sec. IV, the importan
conclusions are discussed.

II. THEORETICAL BACKGROUND

The analysis here is for parallel electrode arrays where th
in-plane direction can be considered of infinite length rela
tive to the other two dimensions. As a consequence, the ele
trode array can be considered a two-dimensional system. T
resulting configuration is described in Fig. 1.

As shown above, the location of thekth midpoint between
electrode pairs is denoted aslk ; the center-to-center to cen-
ter spacing between the electrodes is 2d; the electrode width
is w; and, the leading and trailing edges of thej th electrode
are given byaj andbj , respectively.

To solve for the potential field produced by the electrod
02660
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array, we make use of the upper half-plane Green’s functio
for the potential above a plane~cf. Eq. 6.3.3 in Ref.@9#!:

G~x1 ,x3uj!5
x3 /p

~x12j!21x3
2

. ~2!

Here x3 is the vertical position above the plane;x1 is hori-
zontal position along the electrode plane; andj is the posi-
tion of the surface potential in thex1 direction on the elec-
trode plane. To obtain an expression for the potential abov
the electrode plane, we perform a piecewise integration o
the product of Eq.~2! and the appropriate surface potentia
boundary condition along the entire surface of electrod
plane,

c~x1 ,x3!5E
2`

`

G~x1 ,x3uj!cs~j!dj. ~3!

The surface potentialcs(j) is a function of the surface co-
ordinatej. On the electrodes, we apply an ac voltage, wher
the phase is changed by increments ofp/2 consecutively for
each electrode in the array. The applied potential to thej th
electrode is given as

ce~j!5V0cosS vt1
2p j

n D . ~4!

V0 is the magnitude of the applied rms voltage,v is the
frequency of the applied signal,j is the electrode identifica-
tion, andn is the mode.

For the analysis to follow, we are primarily interested in
stationary phase DEP; therefore,n will be set to 2. It should
be pointed out, however, that the solution derived below i
general and could be used useful to study traveling wav
DEP,n54, as well.

To describe the surface potential in the gaps between ele
trodes we use a linear approximation as described in Ref.@5#,
or

cg~j!5V0S Fcosj 112cosj

2d2w G@j2$lk 2d1w/2%#1cosj D ,

~5!

where fg is the surface potential in the gap, andlk still
denotes the midpoint between thekth pair of electrodes. All

FIG. 1. Planar electrode array: A two-dimensional array of equi
width and equispaced electrodes. The electrode width isw and the
leading and trailing edges of thej th electrode areaj and bj , re-
spectively.lk denotes the location of thekth midpoint between two
adjacent electrodes.
5-2
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DIELECTROPHORETIC MANIPULATION OF . . . PHYSICAL REVIEW E 64 026605
other terms are as described above. cosj is simply cos(vt
12pj/n), and cosj11 is cosj evaluated atj 11. While this is
clearly an approximation of reality, Wanget al. @5# have
shown that use of this boundary condition, Eq.~5!, yields
results that are in excellent agreement with results produc
by rigorous application of the charge density method.

The potential field

Substituing the surface potentials given in Eqs.~4! and~5!
into Eq. ~3! and integrating yields the following solution for
the electric potential above the electrode array shown in Fi
1:

c~x1 ,x3!52
1

p (
j 51

N

ceS arctanF x12bj

x32x30
G

2arctanF x12aj

x32x30
G D 1

1

p (
j 51

N21 H 2cg~x1!

3S arctanFx12aj 11

x32x30
G2arctanF x12bj

x32x30
G D

1
C2~x32x30

!

2
lnS 11Fx12aj 11

x32x30
G2D

2 lnS 11F x12bj

x32x30
G2D J . ~6!

Herex30
locates the height of the electrode plane. The con

stantsC1 , C2, andC3 form the gap surface potential given
in Eq. ~5!, i.e., cg(x1)5C11C2 x11C3. Specifically,C1
5V0 cosj , C25V0(cosj112cosj)/2d2w, andC352(lk2d
1w/2)C2. While the potential given above in Eq.~6! results
from the use of the Green’s function given in Eq.~2!, the
solution given above is identical to Wanget al. @5#.

As shown in Eq.~1!, the DEP force is proportional to the
gradient in the electric field intensity,“(E•E); therefore, we
need to develop analytic expressions for the partial deriv
tives of the appropriate terms. Before doing this, however,
is instructive to look at this gradient,“(E•E), in index no-
tation, or,

]

]xm
ErEr52Er

]Er

]xm
, ~7!

wherer andm are the directional indices. It is clear that to
derive expressions for the gradient we need only obtain th
appropriate partial derivatives ofE1 andE3. All of the terms
necessary to construct“(E•E) are given in the Appendix.
While our starting point, Eq.~2!, differs from Wanget al.
@5#, it can be shown mathematically that we arrive at ident
cal results for the electric potential and the resulting term
that form the gradient in the electric field intensity. The two
independent results serve to confirm each effort.

In the section to follow, we show results for“(E•E) for
various electrode widths, spacings, and applied voltages.
02660
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III. RESULTS

The electric field intensity generated by a parallel array o
interdigitated electrodes produces sufficient dielectrophoret
forces to manipulate colloidal particles and macromolecule
in microflows. Because the DEP force is proportional to th
gradient in the electric field intensity, it is instructive to look
at the components of the gradient in the electric field inten
sity to gain a better intuition into the forces acting on targe
species. In this section, we present surface plots of the ele
tric field intensity and the components of the gradient in th
intensity. In the sections below, we present results from stu
ies that explore variations in electrode width, spacing, an
applied voltage. These studies were chosen to assist dev
designers who employ parallel arrays of electrodes to pro
duce dielectrophoretic forces to manipulate particulate sp
cies in microfluidic devices.

A. The electric field intensity and its gradients

The DEP force is a function of the frequency dependen
complex permittivities of the target species and the suspen
ing fluid, the particle radius and the time-averaged gradien
in the electric field intensity@2,5#, see Eq.~1!. This force can
be used to either levitate~negative DEP! or facilitate capture
~positive DEP! of target species@2#. When using negative
DEP, one can use an imposed flow field and separate spec
based on differences in dielectric properties and effectiv
radii @6#. Specifically, particles of differing properties are
levitated to different positions in the flow field and separa
tions occur due to variations in particle velocity. When using
positive DEP, the goal is to draw target species to the ele
trode array surface. Positive DEP can also be used to acco
plish desired separations by directing target species into
particular branch at a microchannel junction or by actuall
capturing the target species on the surface of the electro
array. In the latter example, the vertical component of th
DEP force must be sufficient to draw the desired species
the array surface, and the compenent parallel to the flo
must be sufficient to balance the hydrodynamic forces actin
on the target species. Like negative DEP, positive DEP sep
rations are effected based on differences in complex perm
tivities and species radii. To provide greater intuition into the
nature of electric field intensity and the gradients in the elec
tric field intensity, we present surface plots of the electric
field intensity and the resulting components of the gradient i
the electric field intensity.

Shown in Fig. 2 is a surface plot of the electric field
intensity produced by the two centeral electrodes in an arra
of 20 parallel, equispaced electrodes. In Fig. 2, the electrod
width, w, and edge-to-edge gap between electrodes,s52d
2w, are both 20mm. The applied voltage is 5Vrms , and the
sign of the applied voltage on each adjacent electrode is o
of phase by 90°. The electric field intensity is sampled a
vertical positions that range from 1 to 30mm above the
electrode array. The electrode edges~electrodes not shown!
are located at230 mm, 210 mm, 10 mm and 30 mm for
the two electrodes chosen. Also, it should be noted that w
use the time-averaged electric field@2,5#. As a result, the
frequency of the applied field is accounted for only through
5-3



de
tor

e

nt
,

d

e-

D. S. CLAGUE AND E. K. WHEELER PHYSICAL REVIEW E64 026605
the complex permittivities of the target species and the s
pending medium, see Eq.~1!.

The electric field intensity maxima, or the sharp peak
occur near the electrode edges. The slope of these pe
show that when a target species is near the surface of
electrode array thex1 component of the gradient in the elec
tric field intensity will either resist or augment particle con
vective transport depending on the particle position relat
to the electrode edge. Furthermore, as the test position
moved away from the surface of the electrode array, the el
tric field intensity drops-off rapidly in an exponential-like
fashion; hence, one could also expect a sharp gradient in
x3 direction near electrode edges. This component of
gradient provides the driving force to effect the desired ve
tical positioning of target species.

In the context of dielectrophoresis, we are interested
the components of the gradient in the electric field intens
Shown in Figs. 3 and 4 are surface plots of thex1 and x3
components of the gradient in the electric field intensity, r
spectively. Shown in Fig. 3 is thex1 component of the gra-
dient in the electric field intensity. The applied voltage is
Vrms . The sample heights above the electrode array ran
from 1 to 30mm. The sharpest fluctuations of this compo
nent of the gradient occur near the edges of each electro
and the sign changes as the test position moves from
leading to the trailing edge of the electrode, see Fig. 2. S
cifically, the x1 component of the DEP force always point
toward the electrode edges. In general, this is consistent w
experimental observation@10#. For the elctrode configuration
under invetigation in this work, it is this component tha
must be large enough to overcome thex1 component of the
hydrodynamic force to achieve particle capture.

In Fig. 4, we present the vertical orx3 component of the
gradient in the electric field intensity. The electrode config
ration, the applied voltage and the test heights are identica
the conditions used in Fig. 3. As with thex1 component of
the gradient in the electric field intensity, the most drama
changes in thex3 component of the gradient occur near th

FIG. 2. Electric field intensityE•E above an electrode array
The applied electric field is 5Vrms with an excitation frequency of
2000 Hz. The electrode array is made up of 20 parallel electrode
infinitesimal thickness with an equal width and gap of 20mm.
0266
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edges of each electrode; however, the sign of thex3 compo-
nent is always negative and points toward the electro
edges. Depending on the sign of the Clausius-Mossotti fac
in Eq. ~1!, the x3 component of the gradient in the electric
field intensity will either cause levitation or capture. In the
case of particle capture, it is this component of the DEP forc
that must overcome hydrodynamic lift effects@11# to hold
the target species at the surface of the electrode array.

B. Dependence on applied voltage and electrode width

In this section, we explore the dependence of the gradie
in the electric field intensity on changes in electrode width
where the spacings is equal to the width, and changes in the
amplitude of the applied voltage. To guide our intuition, it is
instructive to make an order of magnitude estimate of Eq.~1!

.

s of
FIG. 3. Thex1 component of the gradient in electric field inten-

sity. The applied voltage is 5Vrms . The electrode array is made up
of 20 parallel electrodes of infinitesimal thickness. The width an
edge-to-edge spacing between electrodes are both fixed at 20mm.

FIG. 4. Thex3 component gradient in electric field intensity.
The applied voltage is 5Vrms . The electrode array is made up of 20
parallel electrodes of infinitesimal thickness with a width and edg
to-edge spacing between electrodes of 20mm.
05-4
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to predict the expected dependencies. By making all leng
scales in Eq.~1! dimensionless with the particle radiusa, the
magnitude in the DEP force scales@12# as

uFDEPu}
V2

Le
3

. ~8!

V is the amplitude of the applied voltage, andLe is a length
scale for a given electrode in the array. For the electrod
configuration shown in Fig. 1, the characteristic length scale
are assumed to be the widthw of an individual electrode, and
the heighth above the array. In figures, we explore the de
pendence of the gradient in the electric field intensity, an
the DEP force, on these parameters.

In Fig. 5, the gradient in the electric field intensity, which
is proportional to the DEP force, is plotted as a function o
the applied voltages for different electrode widths.

Over the range of voltages sampled, the data were cur
fit to a power law. For all voltages and electrode width
tested, the exponent found from fitting the data revealed
squared dependence of the DEP force on the applied volta
with a correlation coefficient of 1,

u“~E•E!u;V2. ~9!

This result is consistent with the scaling estimate in Eq.~8!
and the analytic expressions for the components of the gr
dient in the electric field intensity given in the Appendix.

An investigation of the dependence ofu“(E•E)u on a
characteristic length scale of the system,Le reveals some
interesting behavior. Shown in Fig. 6 is a plot of
u“(E•E)u as a function of electrode width,w, at test height,
h, of 1 mm for various applied voltages.

For all of the applied voltages tested, a power law fi
shows thatu“(E•E)u scales asw21.76 with a correlation co-
efficient 1. Based on the scaling estimate given in Eq.~8!, a
power law fit was expected to yield an inverse cubic depen

  
 
  
  
  

      

FIG. 5. Gradient in electric field intensity as a function of ap-
plied voltage. The electrode widthsw with equal spacings are
20mm, 40mm, 60mm, and 80mm for each data set. The applied
voltages range from 1 to 10Vrms .
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dence on the electrode width. However, the curve fits sh
that for a fixed test height the electric field intensity, a
therefore the DEP force, is a function of more than o
length scale in the system.

By closely examining the analytic expressions given
the Appendix for the case when the test height is less t
the electrode width, order of magnitude estimates of th
expressions reveal that there are three dominant contr
tions,

u“~E•E!u;OS 1

w3D , OS 1

w h2D , and OS 1

h3D . ~10!

Only the first term predicts the expected inverse cubic
pendence on the electrode width. The other two terms h
ever predict that the magnitude of the gradient in the elec
field intensity is also dependent on the choice of the t
height,h. Consequently, at the test height used in these s
ies, 1 mm, the dependence on the electrode width should
in the range betweenw21 andw23; hence, the dependenc
predicted by the curve fitting is entirely consistent with t
order of magnitude estimates given in Eq.~10!.

C. Dependence on electrode spacing

The final parameter investigated in this paper is the ed
to-edge spacing between electrodes,s. In general, as the elec
trode spacing increases the DEP force decreases. He
electrode widths were chosen and the magnitude of the
dient of the electric field intensity is calculated for variouss.
The results were normalized by the magnitude of the gra
ent found whens5w. In Fig. 7, the results are plotted as
function of the ratio of the spacing to electrode width,s/w.

Consistent with the dependence onw as predicted by
curve fitting the data in Fig. 5, the normalized data collap
onto one curve. Fitting the data to a power law produces
following relationship for u“(E•E)u/u“(E•E)us/w51
;(s/w)21.69. As s is decreased below 2w the gradient in the

  

   
 

FIG. 6. Gradient in electric field intensity as a function of ele
trode widthw. The electrode widthsw and edge-to-edge spacings
are equal and range from 10mm to 100mm. The applied voltage
ranges from 0.5 to 8Vrms .
5-5
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electric field intensity increases exponentially. This mar
increase results from the stronger near-field electro
electrode interactions. For spacings greater than or equ
2w, the magnitude of the gradient in the electric field int
sity is much less than the magnitude whens/w51. This
result reveals that for all electrode widths the electric fi
intensity exhibits the same dependence on the edge to
spacings between adjacent electrodes. This result also d
onstrates that the spacing between electrodes is an impo
design consideration when seeking a desired diele
phoretic force.

IV. CONCLUSIONS

The use of the two-dimensional half-space Green’s fu
tion, Eq. ~2!, with a linear approximation for the surfac

 
 

 
 

 
  

FIG. 7. Normalized magnitude in the gradient in electric fi
intensity as a function of the spacing between electrodes. The
nitude in the gradient in the electric field intensity is normalized
the corresponding value when the electrode widthsw and spacings
are equal. The electrode widths considered are 10, 20, 40,
80mm, and the applied voltage is 5Vrms .
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potential in regions between electrodes yields an identica
expression for the electric potential as Wanget al. @5#. This
common result validates our respective approaches. Chara
terization of the gradient in the electric field intensity as a
function of the applied voltage reveals the expectedV2 de-
pendence as predicted by the order of magnitude estimat
given in Eq. ~8!. The data however did not reveal a cubic
dependence on a particular length scale in the system, th
electrode width, as suggested by Eq.~8!. Order of magnitude
estimates, based on the analytic results from the Appendix
given in Eq.~10! show that the expected dependence on the
electrode widthw actually falls in the range betweenw21

andw23. These estimates are consistent with the dependenc
found from curve fits of the data. For all electrode widths,
the magnitude in the gradient in the electric field intensity
shows the same dependence on the spacing between adjac
electrodes; furthermore, when the spacing between adjace
electrodes is reduced below two electrode widths, the mag
nitude increases exponentially.
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APPENDIX

The components of the electric field are obtained by tak-
ing the gradient of 2c(x1 ,x3). For example, E1
52] c(x1 ,x3)/] x1. The precise expressions forE1 andE3
are given below in Eqs.~A1! and ~A2!.

eld
mag-
by

and
E15
1

p (
j 51

N

ceS x32x30

@x32x30
#21@x12bj #

2
2

x32x30

@x32x30
#21@x12aj #

2D 1
1

p (
j 51

N21 H cg~x1!F x32x30

~x32x30
!21~x12aj 11!2

2
x32x30

~x32x30
!21~x12bj !

2G1C2S arctanFx12aj 11

x32x30
G2arctanF x12bj

x32x30
G D 2C2~x32x30

!F x12aj 11

~x32x30
!21~x12aj 11!2

2
x12bj

~x32x30
!21~x12bj !

2G J . ~A1!

Correspondingly, thex3 component orE3 is given by
605-6
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E35
1

p (
j 51

N

ceS x12aj

@x32x30
#21@x12aj #

2
2

x12bj

@x32x30
#21@x12bj #

2D 1
1

p (
j 51

N21 H cg~x1!F x12bj
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In accordance with Eq.~7!, the components of the gradient in the electric field intensity are made up of the first partials
the components of the electric field. The partial derivative ofE1 with respect tox1 is
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and the partial ofE3 with respect tox3 is given by

]E3

]x3
5

2~x32x30
!

p (
j 51

N

ceS x12bj

$@x32x30
#21@x12bj #

2%2
2

x12aj

$@x32x30
#21@x12aj #

2%2D 1
1

p (
j 51

N21 H 2~x32x30
!cg~x1!

3F x12aj 11

$~x32x30
!21~x12bj 11!2%2

2
x12bj

$~x32x30
!21~x12bj !

2%2G
22 C2~x32x30

!3F 1

$~x32x30
!21~x12bj !

2%2
2

1

$~x32x30
!21~x12aj 11!2%2G23 C2~x32x30

!

3F 1

~x32x30
!21~x12aj 11!2

2
1

~x32x30
!21~x12bj !

2G J . ~A4!

The partial ofE3 with respect tox1 is given by
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Furthermore, the partial ofE1 with respect tox3 is
026605-7
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In accordance with the Swartz relationship,@4# the cross terms,]E3 /]x1 and]E1 /]x3, are equivalent.
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